
 
 

An in-depth understanding of photophysics in organic
photocatalysts

Mengmeng Ma1, 2, Zhijie Wang1, 2, †, and Yong Lei3, †

1Key Laboratory of Semiconductor Materials Science, Beijing Key Laboratory of Low Dimensional Semiconductor Materials and Devices,
Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083, China
2Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
3Fachgebiet Angewandte Nanophysik, Institut für Physik & IMN MacroNano, Technische Universität Ilmenau, Ilmenau 98693, Germany
 

Citation: M  M  Ma,  Z  J  Wang,  and  Y  Lei,  An  in-depth  understanding  of  photophysics  in  organic  photocatalysts[J]. J.  Semicond.,
2023, 44(3), 030401. https://doi.org/10.1088/1674-4926/44/3/030401

 
 

The urgent need to replace conventional fossil  fuels with
clean  energy  has  stimulated  a  large  number  of  research  ef-
forts  on  photocatalytic  hydrogen  evolution[1−4].  Alternatively,
organic semiconductors with tunable light absorption, well-po-
sitioned  band  edges,  and  excellent  charge  separation  are
highly expected[5−8].  Conventionally,  a semiconductor materi-
al  with a wide band gap has a larger exciton binding energy,
while  a  semiconductor  material  with  a  narrow  band  gap  has
a smaller exciton binding energy[9]. Since smaller exciton bind-
ing  energies  are  favorable  for  exciton  separation,  choosing  a
semiconductor  with a  suitable  bandgap seems to be the first
step  toward  high  solar-to-hydrogen  efficiency.  The  tunable
light-harvesting ability  determines the advantage and poten-
tial  of  organic  semiconductors  as  photocatalysts.  However,
the insufficient external quantum efficiency (EQE) and the un-
derlying photophysical  mechanism remain restricting the ori-
entation toward industrialization[10].

To address the challenge in EQE, one strategy is to config-
ure donor/acceptor (D/A) organic heterojunction to obtain ex-
cellent  charge  separation.  In  a  recent  article  (Nat.  Energy,
2022,  7,  340)[11],  Kosco and colleagues  constructed two kinds
of  D/A  organic  heterojunction  for  hydrogen  evolution  reac-
tion  (HER)  containing  a  typical  donor  polymer  PBDB-T-2F
(PM6) and two common acceptors named non-fullerene BTP-
4F (Y6)  and fullerene PCBM with the optimized D/A ratios.  As
shown  in Figs.  1(a)  and 1(b),  the  authors  developed  blends
with  different  morphologies  of  intermixed  and  phase-separ-
ated states  due to  the  different  miscibility  via  the  mini-emul-
sion method. There is an energy level matching reflecting not
only  in  the  energy  levels  of  the  donor  and  acceptor  but  also
in  the  alignment  relationship  with  the  reduction  potential  of
water  and  the  oxidation  potential  of  the  sacrificial  agent
(Fig. 1(c)). Impressively, photophysics is also given adequate at-
tention in this work. A variety of characterization methods con-
taining  ultrafast  transient  absorption  spectroscopy  (uf-TAS)
and  photoinduced  absorption  spectroscopy  (PIAS)  were  car-
ried out to explore photophysical steps closely related to semi-
conductor  photocatalysis  (Fig.  2),  such  as  charge  generation,
exciton dissociation, and charge transfer[12].  It is revealed that
the second-scale long-life charges are induced only by photo-

excitation  in  the  nanoparticle-formed  D/A  heterojunction
whether  in  the  presence  or  absence  of  Pt  and  sacrificial
agent. It was found that no measurable long-lived charge accu-
mulation  was  observed  from  the  spin-coated  PM6:PCBM
films.  This  is  noteworthy  and  highlights  the  unique  advant-
age  of  nanoscale  D/A  heterojunctions.  Their  results  showed
that  organic  D/A  heterojunction  NPs  can  inherently  generate
long-lived reactive  charges,  thereby allowing them to  exhibit
efficient photocatalytic HER performance.

There is no doubt that these results are charming and en-
couraging.  The  innovation  and  breakthroughs  of  this  work
are reflected in the HER performance and photophysical mech-
anism.  This  work  announces  the  broadest  wavelength  range
up to 900 nm and comparable EQEs to plasmonic photocata-
lyst systems for an organic photocatalyst to date, which high-
lights  the  potential  of  D/A  organic  heterojunction  NPs  for
broad-spectrum  HER,  making  these  organic  photocatalysts
more  ready for  use  in  real  applications.  Careful  consideration
and  ingenious  comparisons  are  carried  out  throughout  the
whole  photophysical  exploring  process,  and  the  results  fill
the  gap  in  the  field  of  organic  photocatalysis.  In  conclusion,
this  work  provides  an  in-depth  understanding  of  the  photo-
physics in organic D/A heterojunction photocatalysts. Particu-
larly,  this  thinking  is  conducive  to  further  directing  the  re-
search focus to the intrinsic mechanisms of  the photocatalyt-
ic  processes,  which  may  be  the  key  to  the  current  break-
through in solar energy conversion efficiency.

Since  the  long-lived  charge  has  been  demonstrated  to
be excited by light irradiation in the absence of the sacrificial
reagent,  the  great  promise  can  be  articulated  in  two  ways.
On  the  one  hand,  it  takes  a  significant  step  towards  non-
sacrificial  reagent  organic  NPs  photocatalysis.  On  the  other
hand,  the  long-lived  charge  opens  up  available  applications
for driving kinetically slow catalysis processes such as water ox-
idation.  From  a  long-term  perspective,  the  stability  of  organ-
ic  semiconductor  photocatalysts  and  the  firmness  of  their
binding will also be the research focus. Organic semiconduct-
ors  present  weak  chemical  bonds,  which  is  detrimental  for
long-term photocatalysis, and the construction of heterostruc-
tures  (for  example,  the  D/A  heterojunction  of  this  work)  or
nano-assembly will be feasible strategies[13]. The weak non-co-
valent  interactions  between  molecules,  such  as  hydrogen
bonding,  dipolarization,  π–π  stacking,  van  der  Waals  forces,
hydrophobic  interactions,  electrostatic  interactions,  and  met-
al-ligand  interactions,  will  be  converted  from  inferiority  for
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the  advantages  during  the  self-assembly  process[14, 15].  The
challenge lies  in  achieving regular  crystallization and smooth
charge transport  through perfect  molecular  packing.  Further-
more,  positioning  catalytic  active  sites  is  increasingly  attract-
ing broad interest. Particularly, the complex molecular architec-
tures  and  the  ubiquitous  bonds  caused  by  diverse  positions
of  the  bonding  molecules  make  it  challenging  to  investigate
the  active  sites  for  organic  photocatalysts[16−18].  Ingenious
design  to  embed  synergistic  Brønsted  acid/base  sites  or  act-
ive  metal  atoms  into  organic  frameworks  seems  to  reduce
the difficulty of exploring active sites while remarkably enhan-
cing catalysis[19].
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Fig. 1. (Color online) (a) Bright-field cryo-TEM images of intermixed PM6:Y6 7 : 3 NPs and (b) phase-separated core-shell PM6:PCBM 2 : 8 NPs. (c) En-
ergy level diagram of PM6, Y6, and PCBM measured by UPS and IPES. The dashed lines correspond to the proton reduction potential (H+/H2), wa-
ter  oxidation  potential  (O2/H2O),  and  the  calculated  potential  of  the  two-hole  oxidation  of  ascorbic  acid  to  dehydroascorbic  acid  in  solution
(DHA/AA) at pH 2 (the experimentally measured pH of 0.2 mol/L ascorbic acid).
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Fig. 2. (Color online) Ultrafast TAS characterization for neat PM6, PM6:Y6 7 : 3, and PM6:PCBM 2 : 8 nanoparticles in aqueous suspensions. (a) Transi-
ent absorption spectra of PM6 NPs at different time delays following excitation at 550 nm (fluence: 7.5 μJ/cm2). (b) Comparison of transient ab-
sorption decay dynamics for neat PM6, PM6:PCBM 2 : 8, and PM6:Y6 7 : 3 NPs excited at 550 nm and probed at 1150 nm, assigned to PM6 ex-
citon decay, with the long-lived residual signal assigned to PM6 polaron decay in the heterojunction NPs. (c, d) Transient absorption spectra of
PM6:PCBM 2 : 8 NPs (c) and PM6:Y6 7 : 3 NPs (d) at different time delays, also excited at 550 nm (fluence: 7.5 μJ/cm2). The disconnect in the transi-
ent  absorption  spectra  axis  corresponds  to  the  pump  laser  scattering  (550  nm)  and  the  switch  from  visible  to  NIR  detector  (800 –850  nm).
(e) Schematic representation of exciton decay and electron/energy transfer processes in these NPs.
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